你的位置:首页 > 新闻中心 > 行业新闻

【文章】预防和修复癌症

2019-03-05 11:03:49      点击:

NanoVi™——使用天然生物信号技术预防和修复癌症

作者:Xavier A. Figueroa, Ph.D.(泽维尔·菲格罗亚博士)

 

NanoVi™设备的技术评估测试表明,NanoVi设备在预防癌症,抑制其发展,帮助恢复等方面发挥了重要作用。有证据表明,NanoVi在针对癌症问题方面有着四个重要优势:

 

1. 增强免疫系统

2. 提高炎症反应的有效

3. 增强线粒体功能

4. 减少DNA损伤

 

光子(光粒子)在细胞间促进愈合的信号传递中起着重要作用[1]。多项研究表明,红外(IR)和近红外(NIR)可加速人体伤口愈合[2-3],缓和多种疾病引起的疼痛[4-6],并改善线粒体氧化活性[7-10]。此外,红外和近红外辐射对减轻炎症也有着很大的影响[11-13]。NanoVi设备利用独特的方式传递近红外波长,可有效地对抗炎症。

 

癌症预防和癌症康复并不是单独发生的,人体周围的环境也参与其中。慢性炎症会增加其风险[14-17]并促进癌细胞的生长。但炎症反应的激活也加速了氧自由基的生成,从而导致细胞损伤[23-25]。

 

理想情况下,提高炎症过程的有效性(促进有益的炎症反应,限制不良的炎症反应)对维持健康至关重要。独立实验室测试结果表明,NanoVi对抵抗癌症及癌症后修复其积极地保护作用:

 

1. NanoVi™可防止过度的DNA损伤,并促进修复[26-27];

2. NanoVi™可提高线粒体效率,增强免疫系统[27]

 

已知的测试结果有效证明,使用NanoVi™设备,可用过调节免疫系统、减少慢性炎症、改善线粒体功能来预防癌症。用其配合癌症的治疗,在对抗癌症的致病因素,抑制癌症发展等方面十分重要。NanoVi是一种理想的癌症治疗后的恢复工具。红外和近红外辐射可减轻疼痛这一点[4,28-33],在NanoVi™用户的反馈报告中也得到了证实。这种可测量到的线粒体功能的改善[27],可帮助人体更快地恢复能量水平。而且,辐射诱发的DNA损伤的减少[26],也证明了NanoVi™对于癌症修复发挥了重要作用。

 

NanoVi™是一种非侵入性的安全的设备,可放心作为健康治疗或者癌症治疗后修复的一部分。该设备产生于人体相同的生物信号,是一种强大的工具,可提高人体的修复潜力,也可以增强其他健康和康复治疗的效果。


作者简介:Xavier Figueroa(泽维尔·菲格罗亚)2003年在华盛顿大学(University of Washington)获得神经生物学博士学位,之后在华盛顿大学继续深造生物工程学博士后,并获得了奖学金。他是 Brain Health & Healing Foundation大脑健康和治疗基金会的联合创始人兼会长,并且是多家生物技术和医疗器械公司的科学顾问。Figueroa博士在神经生物学、生物工程、进化生物学和涉及高压氧医学的临床研究领域发表了大量的文章。


以上资料均由美国Eng3 Corporation提供


参考文献:

1. J. Tafur, E. P. Van Wijk, R. Van Wijk, P. J. Mills, Biophoton detection and low-intensity light therapy: a potential clinical partnership. Photomed Laser Surg 28, 23-30 (2010).

2. K. D. Desmet et al., Clinical and experimental applications of NIR-LED photobiomodulation. Photomed Laser Surg 24, 121- 128 (2006).

3. M. E. Chaves, A. R. Araujo, A. C. Piancastelli, M. Pinotti, Effects of low-power light therapy on wound healing: LASER x LED. An Bras Dermatol 89, 616-623 (2014).

4. B. D. Hodgson et al., Amelioration of oral mucositis pain by NASA near-infrared light-emitting diodes in bone marrow transplant patients. Support Care Cancer 20, 1405-1415 (2012).

5. M. Lopez-Ramirez, M. A. Vilchez-Perez, J. Gargallo-Albiol, J. Arnabat-Dominguez, C. Gay-Escoda, Efficacy of low-level laser therapy in the management of pain, facial swelling, and postoperative trismus after a lower third molar extraction. A preliminary study. Lasers Med Sci 27, 559-566 (2012).

6. C. S. Enwemeka et al., The efficacy of low-power lasers in tissue repair and pain control: a meta-analysis study. Photomed Laser Surg 22, 323-329 (2004).

7. R. O. Poyton, K. A. Ball, Therapeutic photobiomodulation: nitric oxide and a novel function of mitochondrial cytochrome coxidase. Discov Med 11, 154-159 (2011).

8. E. A. Buravlev, T. V. Zhidkova, Y. A. Vladimirov, A. N. Osipov, Effects of laser and LED radiation on mitochondrial respiration in experimental endotoxic shock. Lasers Med Sci 28, 785-790 (2013).

9. E. A. Buravlev, T. V. Zhidkova, Y. A. Vladimirov, A. N. Osipov, Effects of low-level laser therapy on mitochondrial respiration and nitrosyl complex content. Lasers Med Sci, (2014).

10. F. Gonzalez-Lima, B. R. Barksdale, J. C. Rojas, Mitochondrial respiration as a target for neuroprotection and cognitive enhancement. Biochem Pharmacol 88, 584-593 (2014).

11. H. Araki, A. Imaoka, N. Kuboyama, Y. Abiko, Reduction of interleukin-6 expression in human synoviocytes and rheumatoid arthritis rat joints by linear polarized near infrared light (Superlizer) irradiation. Laser Ther 20, 293-300 (2011).

12. S. Farivar, T. Malekshahabi, R. Shiari, Biological effects of low level laser therapy. J Lasers Med Sci 5, 58-62 (2014).

13. M. K. Giacci et al., Differential Effects of 670 and 830 nm Red near Infrared Irradiation Therapy: A Comparative Study of Optic Nerve Injury, Retinal Degeneration, Traumatic Brain and Spinal Cord Injury. PLoS One 9, e104565 (2014).

14. W. Berghoff, Chronic Lyme Disease and Co-infections: Differential Diagnosis. The Open Neurology Journal 6, 158-178 (2012).

15. Keane-Myers, S. P. Nickell, T cell subset-dependent modulation of immunity to Borrelia burgdorferi in mice. J Immunol 154, 1770-1776 (1995).

16. G. Ramesh, P. Didier, J. England, L. Santana-Gould, L. Doyle-Meyers, D. Martin, M. Jacobs and M. Philipp, Inflammation in the Pathogenesis of Lyme Neuroborreliosis. The American Journal of Pathology 185, 1344-1360 (2015).

17. M. J. Soloski, L. A. Crowder, L. J. Lahey, C. A. Wagner, W. H. Robinson, and J. N. Aucott, Serum inflammatory mediators as markers of human Lyme disease activity. PLoS ONE 9, p.e93243 (2014).

18. D. S. Pinto, Cardiac manifestations of lyme disease. Medical Clinics of North America 86, 285–296 (2002).

19. S. K. Singh and H. J. Girschick, Lyme borreliosis: From infection to autoimmunity. Clinical Microbiology and Infection 10, 598–614 (2004).

20. B. A. Fallon, E. S. Levin, P. J. Schweitzer, and D. Hardesty, Inflammation and central nervous system Lyme disease. Neurobiology of Disease 37, 534–541 (2010).

21. D. Mattingley and M. Koola, Association of lyme disease and schizoaffective disorder, bipolar type: Is it inflammation mediated? Indian Journal of Psychological Medicine 37, 243 (2015).

22. R. C. Bransfield, The Psychoimmunology of Lyme/tick-borne diseases and its association with neuropsychiatric symptoms. The Open Neurology Journal 6, 88–93 (2012).

23. M. Soory, Relevance of nutritional antioxidants in metabolic syndrome, ageing and cancer: potential for therapeutic targeting. Infect Disord Drug Targets 9, 400-414 (2009).

24. M. Varcin, E. Bentea, Y. Michotte, S. Sarre, Oxidative stress in genetic mouse models of Parkinson's disease. Oxid Med Cell Longev 2012, 624925 (2012).

25. T. Guina, F. Biasi, S. Calfapietra, M. Nano, G. Poli, Inflammatory and redox reactions in colorectal carcinogenesis. Ann N Y Acad Sci 1340, 95-103 (2015).

26. W. Dörr, E. Bozsaky, D. o. R. O. a. t. M. U. o. Vienna, Ed. (2014).

27. S. Hartmann, "NanoVi™ – Inhalation bei Sportlern zur Verbesserung des oxidativen Schutzes," Universit at Wien, Universit at Wien, Magisterstudium Sportwissenchaft (2015).

28. K. M. Lagan, B. A. Clements, S. McDonough, G. D. Baxter, Low intensity laser therapy (830nm) in the management of minor postsurgical wounds: a controlled clinical study. Lasers Surg Med 28, 27-32 (2001).

29. H. T. Whelan et al., Effect of NASA light-emitting diode irradiation on wound healing. J Clin Laser Med Surg 19, 305-314 (2001).

30. A. Gur et al., Efficacy of different therapy regimes of low-power laser in painful osteoarthritis of the knee: a double-blind and randomized-controlled trial. Lasers Surg Med 33, 330-338 (2003).

31. T. G. Carrasco, M. O. Mazzetto, R. G. Mazzetto, W. Mestriner, Jr., Low intensity laser therapy in temporomandibular disorder: a phase II double-blind study. Cranio 26, 274-281 (2008).

32. C. M. Hancock, C. Riegger-Krugh, Modulation of pain in osteoarthritis: the role of nitric oxide. Clin J Pain 24, 353-365 (2008).

33. R. L. Carvalho, P. S. Alcantara, F. Kamamoto, M. D. Cressoni, R. A. Casarotto, Effects of low-level laser therapy on pain and scar formation after inguinal herniation surgery: a randomized controlled single-blind study. Photomed Laser Surg 28, 417-422 (2010).